Lecture Four: Moral Hazard

Cheng Chen

School of Economics and Finance The University of Hong Kong

- Examples:
 - Corporate governance and separation of ownership and control inside the firm (Jensen and Meckling, 1876; Fama, 1980)
 - Bonus and incentive pay for employees.
 - ► Sharecropping

Examples:

- Corporate governance and separation of ownership and control inside the firm (Jensen and Meckling, 1876; Fama, 1980)
- ► Bonus and incentive pay for employees.
- Sharecropping
- Grades and student performance.
- ► Tenure system adopted in the US and elsewhere.

- Examples:
 - Corporate governance and separation of ownership and control inside the firm (Jensen and Meckling, 1876; Fama, 1980)
 - Bonus and incentive pay for employees.
 - Sharecropping
 - Grades and student performance.
 - ► Tenure system adopted in the US and elsewhere.
- Why do we care about it?
 - Moral hazard problem is everywhere.

- Examples:
 - Corporate governance and separation of ownership and control inside the firm (Jensen and Meckling, 1876; Fama, 1980)
 - Bonus and incentive pay for employees.
 - Sharecropping
 - Grades and student performance.
 - Tenure system adopted in the US and elsewhere.
- Why do we care about it?
 - Moral hazard problem is everywhere.
 - Neoclassical economics and frictions. (Pareto improvement and mechanism design).
 - Market efficiency and welfare (first-best and second-best).

Case one: Tragedy of Continental 3407 (firm boundary)
 https://en.wikipedia.org/wiki/Colgan_Air_Flight_3407

- Case one: Tragedy of Continental 3407 (firm boundary)
 https://en.wikipedia.org/wiki/Colgan_Air_Flight_3407
- Case two: Fisher body and GM (firm-specific investment): https://en.wikipedia.org/wiki/Fisher_Body

- Case one: Tragedy of Continental 3407 (firm boundary)
 https://en.wikipedia.org/wiki/Colgan_Air_Flight_3407
- Case two: Fisher body and GM (firm-specific investment): https://en.wikipedia.org/wiki/Fisher_Body
- Case three: Lead toys and Toyota scandals (outsourcing and quality concerns): https: //en.wikipedia.org/wiki/2007_Chinese_export_recalls https:
 - //en.wikipedia.org/wiki/2009âĂŞ11_Toyota_vehicle_recalls

- Case one: Tragedy of Continental 3407 (firm boundary)
 https://en.wikipedia.org/wiki/Colgan_Air_Flight_3407
- Case two: Fisher body and GM (firm-specific investment): https://en.wikipedia.org/wiki/Fisher_Body
- Case three: Lead toys and Toyota scandals (outsourcing and quality concerns): https: //en.wikipedia.org/wiki/2007_Chinese_export_recalls https:
 - //en.wikipedia.org/wiki/2009âĂŞ11_Toyota_vehicle_recalls
- Case four: 1994 Black Hawk shootdown incident (coordination): https://en.wikipedia.org/wiki/1994_Black_Hawk_shootdown_incident

An Example

- Moral hazard: Hidden action.
- A bilateral contracting: an employer (the principal) wants to incentivize her employee (the agent) to work.
 - ► Employee's effort: a.
 - Output $q \in \{0,1\}$ (binary).
 - ▶ Pr(q = 1|a) = p(a); p'(a) > 0 with p''(a) < 0 (a concave function).

An Example

- Moral hazard: Hidden action.
- A bilateral contracting: an employer (the principal) wants to incentivize her employee (the agent) to work.
 - ► Employee's effort: a.
 - Output $q \in \{0,1\}$ (binary).
 - ▶ Pr(q = 1|a) = p(a); p'(a) > 0 with p''(a) < 0 (a concave function).
 - Utility functions:
 - **1**V(q-w) for the principal
 - ② $u(w)-\psi(a)$ for the agent.
 - $\psi(a)$: cost of exerting effort (standard assumptions)

First-Best

• F-B case (no information asymmetry):

$$\max_{\substack{a,w_i\\ a,w_i}} \quad p(a)V(1-w_1) + [1-p(a)]V(-w_0)$$
 s.t.
$$p(a)u(w_1) + [1-p(a)]u(w_0) - a \ge \bar{u}.$$
 (PC)

• Normalize outside option \bar{u} to zero.

First-Best

F-B case (no information asymmetry):

$$\max_{\substack{a,w_i\\a,w_i}} p(a)V(1-w_1) + [1-p(a)]V(-w_0)
s.t. p(a)u(w_1) + [1-p(a)]u(w_0) - a \ge \bar{u}.$$
(PC)

- Normalize outside option \bar{u} to zero.
- λ : Lagrange multiplier for PC.
- Borch rule (Borch, 1962):

$$\frac{V'(1-w_1)}{u'(w_1)} = \lambda = \frac{V'(-w_0)}{u'(w_0)}$$

• Two cases:

(Cheng Chen (HKU))

- ▶ Risk-neutral principal (V(x) = x): $u(w^*) = a^*$ and $p'(a^*) = \frac{1}{u'(w^*)}$.
- Risk-neutral agent (u(x) = x): $w_1^* w_0^* = 1$ and $p'(a^*) = 1$.

Econ 6006

5 / 28

Second-Best

Formalize problem:

$$\begin{array}{ll} \max_{a,w_i} & p(a) \, V(1-w_1) + [1-p(a)] \, V(-w_0) \\ s.t. & p(a) u(w_1) + [1-p(a)] u(w_0) - a \geq \bar{u}; \\ & a \in \mathop{\rm argmax}_{\hat{a}} \; p(\hat{a}) u(w_1) + [1-p(\hat{a})] u(w_0) - \hat{a}. \end{array} \ (\textit{IC})$$

Second-Best

Formalize problem:

$$\begin{array}{ll} \max_{a,w_i} & p(a) \, V(1-w_1) + [1-p(a)] \, V(-w_0) \\ s.t. & p(a) \, u(w_1) + [1-p(a)] \, u(w_0) - a \geq \bar{u}; \\ & a \in \mathop{\rm argmax}_{\hat{a}} \; p(\hat{a}) \, u(w_1) + [1-p(\hat{a})] \, u(w_0) - \hat{a}. \end{array} \; (IC)$$

• The FOC for agent:

$$p'(a)[u(w_1) - u(w_0)] = 1.$$

• We can use FOC to replace IC (not true in general)

- 4日ト 4個ト 4 差ト 4 差ト - 差 - 釣り()

- Suppose agent is risk-neutral.
- In the first best case, the optimal effort choice is $p'(a^*)=1$ (see previous analysis).

- Suppose agent is risk-neutral.
- ullet In the first best case, the optimal effort choice is $p'(a^*)=1$ (see previous analysis).
- Question: Can we implement this effort choice in the second best world (i.e., with information friction)

- Suppose agent is risk-neutral.
- ullet In the first best case, the optimal effort choice is $p'(a^*)=1$ (see previous analysis).
- Question: Can we implement this effort choice in the second best world (i.e., with information friction)
- Answer: Yes, if there are no resource constraints.
 - ▶ Set $w_1^* w_0^* = 1 \rightarrow p'(a^*) = 1$ (i.e., selling the firm to manager).
 - ► Choose a small (and negative) enough w_0^* such that the PC of agent becomes an equality.
 - ▶ Since $\bar{u} = 0$, w_0^* must be negative.

- Suppose agent is risk-neutral.
- ullet In the first best case, the optimal effort choice is $p'(a^*)=1$ (see previous analysis).
- Question: Can we implement this effort choice in the second best world (i.e., with information friction)
- Answer: Yes, if there are no resource constraints.
 - ▶ Set $w_1^* w_0^* = 1 \rightarrow p'(a^*) = 1$ (i.e., selling the firm to manager).
 - ► Choose a small (and negative) enough w_0^* such that the PC of agent becomes an equality.
 - ▶ Since $\bar{u} = 0$, w_0^* must be negative.
- Answer: No, if there are resource constraints (i.e., $w_i \ge 0$).
 - ▶ Suppose it is possible $\rightarrow w_1 w_0 = 1$ and p'(a) = 1.
 - Agent's payoff= $p(a)u(w_1)+[1-p(a)]u(w_0)\geq p(a)w_1\geq p(a)$, since $w_0>0$ and $w_1>1$.
 - We know $p'(a) = 1 \rightarrow p(a) a > 0$ (remember the shape of p(a)).

(Cheng Chen (HKU)) Econ 6006 7 / 28

• Conclusion: Principal *cannot* implement the first best effort level and extract all the payoff from agent, if there *are* resource constraints.

- Conclusion: Principal cannot implement the first best effort level and extract all the payoff from agent, if there are resource constraints.
- Optimization problem becomes

$$\max_{a} \qquad p(a)(1-w_1) \\ s.t. \qquad p^{'}(a)w_1 = 1. \qquad (IC)$$

Solution:

$$p'(a) = 1 - \frac{p(a)p''(a)}{[p'(a)]^2} > 1$$

• Under-provision of effort (i.e., $a < a^*$): tradeoff between providing incentive and extracting rents from agent.

Managerial Incentive Schemes

- Composition:
 - ► Main parts: Wage ("safe" transfer); bonus (short-term incentive component); stock option (long-term incentive component)
 - Other parts: Pension rights and severance pay ("golden parachutes")

Managerial Incentive Schemes

- Composition:
 - ► Main parts: Wage ("safe" transfer); bonus (short-term incentive component); stock option (long-term incentive component)
 - ► Other parts: Pension rights and severance pay ("golden parachutes")
- Some features:
 - Long-term relationship;
 - More than managerial effort: risk-taking, efficient cost cutting, adequate payout provisions, empire building, etc.
 - Compensation committee is often appointed by CEO.

Managerial Incentive Schemes

Composition:

- ► Main parts: Wage ("safe" transfer); bonus (short-term incentive component); stock option (long-term incentive component)
- ► Other parts: Pension rights and severance pay ("golden parachutes")

Some features:

- Long-term relationship;
- ► More than managerial effort: risk-taking, efficient cost cutting, adequate payout provisions, empire building, etc.
- Compensation committee is often appointed by CEO.
- ► Managers are often generously rewarded even when their company is doing poor. (Is this true for your company?)
- Some studies show that a 10,000 USD increase in profit leads to a 8 − 10 USD increase in CEO's pay (surprising?).

A Model of Managerial Remuneration

- Profit: $q = a + \epsilon_q$.
- Stock price: $P = a + \epsilon_P$.
- Both ϵ_q and ϵ_P are normally distributed (variance: σ_q^2 and σ_P^2 and covariance: σ_{qP}).

A Model of Managerial Remuneration

- Profit: $q = a + \epsilon_q$.
- Stock price: $P = a + \epsilon_P$.
- Both ϵ_q and ϵ_P are normally distributed (variance: σ_q^2 and σ_P^2 and covariance: σ_{qP}).
- Utility (CARA):

$$u(w,a) = -e^{-\eta[w-\psi(a)]}.$$

- Absolute Risk Aversion: $\frac{-u''(c)}{u'(c)}$.
- Relative Risk Aversion: $\frac{-u''(c)*c}{u'(c)}$.
- Effort cost: $\psi(a) = \frac{1}{2}ca^2$.

◆□▶ ◆圖▶ ◆불▶ ◆불▶ ○월 ○ જ)

A Model of Managerial Remuneration

- Profit: $q = a + \epsilon_q$
- Stock price: $P = a + \epsilon_P$.
- Both ϵ_q and ϵ_P are normally distributed (variance: σ_q^2 and σ_P^2 and covariance: σ_{qP}).
- Utility (CARA):

$$u(w, a) = -e^{-\eta[w-\psi(a)]}.$$

- Absolute Risk Aversion: $\frac{-u''(c)}{u'(c)}$.
- Relative Risk Aversion: $\frac{-u''(c)*c}{u'(c)}$.
- Effort cost: $\psi(a) = \frac{1}{2}ca^2$.
- Compensation scheme: w = t + sq + fP.

4□▶ 4□▶ 4□▶ 4□▶ 3□ 900

A Model of Managerial Remuneration (Cont.)

Optimization problem:

$$\begin{array}{ll} \max\limits_{\substack{a,t,s,f} \\ s.t.} & E(q-w) \\ & s.t. & E(-e^{-\eta[w-\psi(a)]}) \geq -e^{-\eta\bar{w}}; \quad (PC) \\ & a \in \operatorname*{argmax}_{a} E(-e^{-\eta[w-\psi(a)]}). \quad (IC) \end{array}$$

• Optimal effort chose by manager: $a = \frac{s+f}{c}$.

A Model of Managerial Remuneration (Cont.)

Optimization problem:

$$\begin{array}{ll} \max\limits_{a,t,s,f} & E(q-w) \\ s.t. & E(-e^{-\eta[w-\psi(a)]}) \geq -e^{-\eta\bar{w}}; & (PC) \\ & a \in \mathop{\mathrm{argmax}}_{a} E(-e^{-\eta[w-\psi(a)]}). & (IC) \end{array}$$

- Optimal effort chose by manager: $a = \frac{s+t}{c}$.
- Transformed problem:

$$\begin{aligned} \max_{t,s} & & (1-s-f)\frac{s+f}{c} - t \\ s.t. & & (s+f)\frac{s+f}{c} + t - \frac{1}{2}\eta[s^2\sigma_q^2 + 2sf\sigma_{qP} + f^2\sigma_P^2] - \frac{1}{2}\Big(\frac{s+f}{c}\Big)^2 \\ & = \bar{w}. \end{aligned}$$

First part: expected income; Second part: loss due to risk aversion; Final part: effort cost.

(Cheng Chen (HKU)) Econ 6006 11 / 28

A model of Managerial Remuneration (Cont.)

Solution:

$$s^* = \frac{\sigma_P^2 - \sigma_{qP}}{\sigma_P^2 - 2\sigma_{qP} + \sigma_q^2} \frac{1}{1 + \eta c \Sigma}$$

and

$$f^* = \frac{\sigma_q^2 - \sigma_{qP}}{\sigma_P^2 - 2\sigma_{qP} + \sigma_q^2} \frac{1}{1 + \eta c \Sigma},$$

where

$$\Sigma = \frac{\sigma_P^2 \sigma_q^2 - \sigma_{qP}^2}{\sigma_P^2 - 2\sigma_{qP} + \sigma_q^2}.$$

A model of Managerial Remuneration (Cont.)

• Case one: No correlation (i.e., $\sigma_{qP}=0$)

$$s^* = \frac{\sigma_P^2}{\sigma_P^2 + \sigma_q^2 + \eta c \sigma_P^2 \sigma_q^2};$$

$$f^* = \frac{\sigma_q^2}{\sigma_P^2 + \sigma_q^2 + \eta c \sigma_P^2 \sigma_q^2}.$$

Incentive power, $s^* + f^*$, goes to one, if η goes to zero (Why?).

A model of Managerial Remuneration (Cont.)

• Case one: No correlation (i.e., $\sigma_{qP}=0$)

$$s^* = \frac{\sigma_P^2}{\sigma_P^2 + \sigma_q^2 + \eta c \sigma_P^2 \sigma_q^2};$$

$$f^* = \frac{\sigma_q^2}{\sigma_P^2 + \sigma_q^2 + \eta c \sigma_P^2 \sigma_q^2}.$$

Incentive power, $s^* + f^*$, goes to one, if η goes to zero (Why?).

ullet Case two: if $\epsilon_P=\epsilon_q+\zeta$, then

$$f^* = 0$$
 $s^* = \frac{1}{1 + \eta c \sigma_q^2}$.

Information on stock price is redundant (value of information), and information of output is a *sufficient statistic*. Never use redundant information, as agent is risk averse (Holmstrom's contribution which won Nobel prize).

Digressions: Prof. Van Reenen and HKU

 Prof. Van Reenen gave a public lecture at HKU last year: https://www.youtube.com/watch?v=wqMksaJ6smM&t=160s

Debt Financing and Moral Hazard

• References: Jensen and Meckling (1976) and Innes (1990).

Debt Financing and Moral Hazard

- References: Jensen and Meckling (1976) and Innes (1990).
- Insight one: Repayment of debt does not vary with firm performance
 → debt financing is desirable if ∃ moral hazard problem (manager:
 residual claimant)
- Insight two: if higher effort is associated with higher profit → fixed payment when performance is high and all paid to creditor when performance is low (maximize incentive to manager)

Debt Financing and Moral Hazard

- References: Jensen and Meckling (1976) and Innes (1990).
- Insight one: Repayment of debt does not vary with firm performance
 → debt financing is desirable if ∃ moral hazard problem (manager:
 residual claimant)
- Insight two: if higher effort is associated with higher profit → fixed payment when performance is high and all paid to creditor when performance is low (maximize incentive to manager)
- Output: q; effort: a; conditional distribution of output: F(q|a); payment: r(q).
- Creditor's payoff: $\int_0^{\bar{q}} r(q)f(q|a)dq$; debtor's payoff: $\int_0^{\bar{q}} [q-r(q)]f(q|a)dq \psi(a)$. $\psi(a)$: cost to exert effort.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Debt Financing and Moral Hazard

- References: Jensen and Meckling (1976) and Innes (1990).
- Insight one: Repayment of debt does not vary with firm performance
 → debt financing is desirable if ∃ moral hazard problem (manager:
 residual claimant)
- Insight two: if higher effort is associated with higher profit → fixed payment when performance is high and all paid to creditor when performance is low (maximize incentive to manager)
- Output: q; effort: a; conditional distribution of output: F(q|a); payment: r(q).
- Creditor's payoff: $\int_0^{\bar{q}} r(q)f(q|a)dq$; debtor's payoff: $\int_0^{\bar{q}} [q-r(q)]f(q|a)dq \psi(a)$. $\psi(a)$: cost to exert effort.
- Two assumptions:
 - **1** Limited liability: $0 \le r(q) \le q$.
 - 2 Monotonicity: $0 \le r'(q)$.

4 D > 4 A > 4 B > 4 B > B = 40 0

Optimization Problem

Optimization problem:

$$\begin{array}{ll} \max_{r(q),a} & \int_{0}^{\bar{q}} [q-r(q)] f(q|a) dq - \psi(a) - I \\ \\ s.t. & \int_{0}^{\bar{q}} [q-r(q)] f_a(q|a) dq = \psi^{'}(a); \qquad (IC) \\ & \int_{0}^{\bar{q}} r(q) f(q|a) dq = I; \quad (IR) \\ & 0 \leq r(q) \leq q. \quad (LL) \end{array}$$

Lagrangean

• Lagrangean:

$$L = \int_{0}^{\bar{q}} [q - r(q)] f(q|a) dq - \psi(a)$$

$$+ \mu \left[\int_{0}^{\bar{q}} [q - r(q)] f_{a}(q|a) dq - \psi'(a) \right] + \lambda \left[\int_{0}^{\bar{q}} r(q) f(q|a) dq - I \right].$$

17 / 28

(Cheng Chen (HKU)) Econ 6006

Lagrangean

• Lagrangean:

$$L = \int_{0}^{\bar{q}} [q - r(q)] f(q|a) dq - \psi(a)$$

$$+ \mu [\int_{0}^{\bar{q}} [q - r(q)] f_{a}(q|a) dq - \psi'(a)] + \lambda [\int_{0}^{\bar{q}} r(q) f(q|a) dq - I].$$

• We can rearrange it to

$$\begin{array}{ll} L & = & \int_0^{\bar{q}} r(q) \Big[\lambda - \mu \frac{f_a(q|a)}{f(q|a)} - 1 \Big] f(q|a) dq \\ & + \int_0^{\bar{q}} q \Big[1 + \mu \frac{f_a(q|a)}{f(q|a)} \Big] f(q|a) dq - \psi(a) - \mu \psi'(a) - \lambda I. \end{array}$$

17 / 28

Lagrangean

• Lagrangean:

$$L = \int_{0}^{\bar{q}} [q - r(q)] f(q|a) dq - \psi(a)$$

$$+ \mu [\int_{0}^{\bar{q}} [q - r(q)] f_{a}(q|a) dq - \psi'(a)] + \lambda [\int_{0}^{\bar{q}} r(q) f(q|a) dq - I].$$

We can rearrange it to

$$\begin{array}{ll} L & = & \int_0^{\bar{q}} r(q) \Big[\lambda - \mu \frac{f_a(q|a)}{f(q|a)} - 1 \Big] f(q|a) dq \\ & + \int_0^{\bar{q}} q \Big[1 + \mu \frac{f_a(q|a)}{f(q|a)} \Big] f(q|a) dq - \psi(a) - \mu \psi^{'}(a) - \lambda I. \end{array}$$

• Solution: $r^*(q) = q$ if $\lambda > 1 + \mu \frac{f_a(q|a)}{f(q|a)}$ and $r^*(q) = 0$ if $\lambda \le 1 + \mu \frac{f_a(q|a)}{f(q|a)}$.

(Cheng Chen (HKU)) Econ 6006 17 / 28

MLRP

Monotone likelihood ratio property (MLRP):

$$\frac{d}{dq} \left[\frac{f_a(q|a)}{f(q|a)} \right] \ge 0.$$

• Higher output \rightarrow higher pay.

MLRP

Monotone likelihood ratio property (MLRP):

$$\frac{d}{dq} \left[\frac{f_a(q|a)}{f(q|a)} \right] \ge 0.$$

- Higher output → higher pay.
- MLRP is satisfied $\rightarrow r^*(q) = 0$ if q > Z and $r^*(q) = q$ if q < Z.

Summary

- Highly non-monotonic. In reality, we probably have
 - $r_D(q) = D$ if q > D and $r_D(q) = q$ if $q \le D$.
 - $\int_0^D q f(q|a^*) dq + [1 F(D|a^*)] D = I \text{ and }$ $\int_D^{\bar{q}} (q D) f_a(q|a^*) dq = \psi'(a^*).$

Summary

- Highly non-monotonic. In reality, we probably have
 - $r_D(q) = D$ if q > D and $r_D(q) = q$ if $q \le D$.
 - $\int_0^D q f(q|a^*) dq + [1 F(D|a^*)] D = I \text{ and }$ $\int_D^{\bar{q}} (q D) f_a(q|a^*) dq = \psi'(a^*).$
- Why? We want to maximize incentive power.

Summary

- Highly non-monotonic. In reality, we probably have
 - $r_D(q) = D$ if q > D and $r_D(q) = q$ if $q \le D$.
 - $\int_0^D q f(q|a^*) dq + [1 F(D|a^*)] D = I \text{ and }$ $\int_D^{\bar{q}} (q D) f_a(q|a^*) dq = \psi'(a^*).$
- Why? We want to maximize incentive power.
- Key assumption: risk neutrality.
- Subsequent work: Dewatripont, Legros and Matthews (2003): dynamic setting with renegotiation.

- ◀ □ ▶ ◀ @ ▶ ◀ 볼 ▶ 《 볼 · 씨 Q @

Graphical Representation

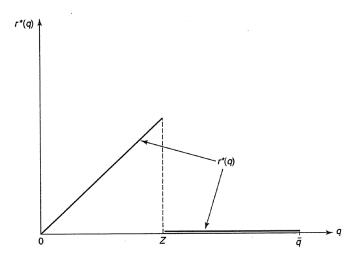


Figure 4.3
Optimal Nonmonotonic Contract

- (口)(避)(注)(注)(注) 注 (()(()

Debt Financing and Adverse Selection

• References: Townsend (1979) and Gale and Hellwig (1985).

Debt Financing and Adverse Selection

- References: Townsend (1979) and Gale and Hellwig (1985).
- Suppose it is costly to observe information on profit π . Cost: K (e.g., auditing).
- Big insight: debt financing is still optimal (minimization of auditing cost).

Debt Financing and Adverse Selection

- References: Townsend (1979) and Gale and Hellwig (1985).
- Suppose it is costly to observe information on profit π . Cost: K (e.g., auditing).
- Big insight: debt financing is still optimal (minimization of auditing cost).
- Revelation principle: contacts conditional on π .
- True profit: π ; reported profit: $\hat{\pi}$.
- Maximum punishment: $r(\hat{\pi}, \pi) = \pi$ whenever $\hat{\pi} \neq \pi$.
- Random auditing: not allowed (i.e, $p(\pi) \in \{0,1\}$). Maybe realistic.

Optimization Problem

Optimization problem:

$$\min_{p(\pi), r(\pi), r_a(\pi)} K \int_0^\infty p(\pi) f(\pi) d\pi$$
 s.t. $r_a(\pi_1) \leq r(\pi_2); \ \forall \ \pi_1 \neq \pi_2$ such that $p(\pi_1) = 1$ and $p(\pi_2) = 0; \ (IC1)$ $r(\pi_1) = r(\pi_2) = r; \ \forall \pi_1 \neq \pi_2$ such that $p(\pi_1) = 0 = p(\pi_2) = 0; \ (IC2)$
$$\int_0^\infty p(\pi) [r_a(\pi) - K] f(\pi) d\pi$$

$$+ \int_0^\infty [1 - p(\pi)] r(\pi) f(\pi) d\pi \geq I; \ (IR)$$
 $r(\pi) \leq \pi \ r_a(\pi) \leq \pi. \ (LL)$

Incentive Compatibility

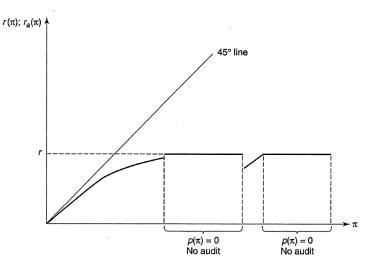


Figure 5.1
An Incentive-Compatible Repayment Schedule

(Cheng Chen (HKU)) Econ 6006 23 / 28

Observations

- Three observations:
 - \bullet $\pi = 0$ is in the audit set.

Observations

- Three observations:
 - \bullet $\pi = 0$ is in the audit set.
 - 2 $r_a(\pi) = \min\{\pi, r\}$ (Fig. 5.2)

Observations

- Three observations:
 - \bullet $\pi = 0$ is in the audit set.
 - 2 $r_a(\pi) = \min\{\pi, r\}$ (Fig. 5.2)
 - **3** Any contract with a disconnected audit subset $[0, \hat{\pi}] \cup [\pi_0, \pi_1]$ would be inefficient. (Fig. 5.3 and 5.4)

Observation Two

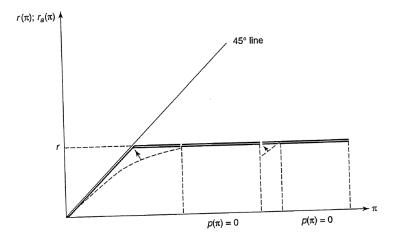


Figure 5.2 Incentive-Compatible Repayment Schedule with $r_a\left(\pi\right)=\min\{\pi,r\}$

Observation Three

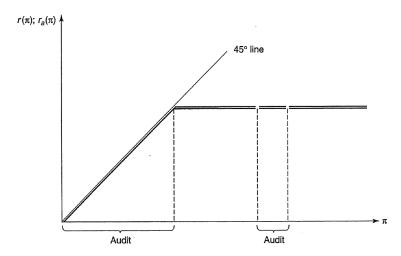


Figure 5.3 Inefficient Audit Region

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Observation Three (Cont.)

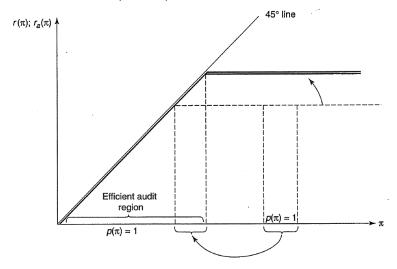


Figure 5.4 Efficient Audits

(Cheng Chen (HKU)) Econ 6006 27 / 28

Optimal Contract

- Standard debt contract: $r_a(\pi) = \pi$ for $\pi \leq \bar{\pi}$ $r = \bar{\pi}$ for $\pi > \bar{\pi}$.
- PC of creditor:

$$\int_0^{\bar{\pi}} (\pi - K) f(\pi) d\pi + [1 - F(\bar{\pi})] r = I$$

and expected cost of auditing: $F(\bar{\pi})K$.

Optimal Contract

- Standard debt contract: $r_a(\pi) = \pi$ for $\pi \leq \bar{\pi}$ $r = \bar{\pi}$ for $\pi > \bar{\pi}$.
- PC of creditor:

$$\int_0^{\bar{\pi}} (\pi - K) f(\pi) d\pi + [1 - F(\bar{\pi})] r = I$$

and expected cost of auditing: $F(\bar{\pi})K$.

- Problem: not renegotiation-proof or subgame perfect (commitment problem).
- Several assumptions:
 - Risk neutrality (Gale and Hellwig, 1985);
 - No random auditing (Mookherjee and Png, 1989);
 - Multiple projects and financiers (Gale and Hellwig, 1989 and Winton, 1995).

- 4 □ ▶ 4 ∰ ▶ 4 분 ▶ 4 분 ▶ 9 Q @